Fuel-Saving-Oriented Collaborative Driving Strategy for Commercial Vehicles Based on Driving Style Recognition

Author:

Chu Hongqing1ORCID,Li Zongxuan1,Wang Jialin2,Hong Jinlong1

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China

Abstract

Fuel-saving-oriented collaborative driving is a highly promising yet challenging endeavor that requires satisfying the driver’s operational intentions while surpassing the driver’s fuel-saving performance. In light of this challenge, the paper introduces an innovative collaborative driving strategy tailored to the objective of fuel conservation in the context of commercial vehicles. An enhancement to this strategy involves the development of a network prediction model for vehicle speed, leveraging insights from driver style recognition. Employing the predicted speed as a reference, a model-predictive-control-based optimal controller is designed to track the reference while optimizing fuel consumption. Furthermore, a straightforward yet effective collaborative rule is proposed to ensure alignment with the driver’s intention. Subsequently, the proposed control scheme is validated through simulation and real-world driving data, revealing that the human–machine cooperative driving controller saves 4% more fuel than human drivers.

Funder

National Nature Science Foundation of China

International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality

Fundamental Research Funds for the Central Universities

Foundation of State Key Laboratory of Automotive Simulation and Control

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3