Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids

Author:

Tasnim Moshammed Nishat1,Ahmed Tofael1ORCID,Dorothi Monjila Afrin1,Ahmad Shameem2ORCID,Shafiullah G. M.3ORCID,Ferdous S. M.3ORCID,Mekhilef Saad45ORCID

Affiliation:

1. Advanced Power System Laboratory, Department of Electrical & Electronic Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong 4349, Bangladesh

2. Department of Electrical & Electronics Engineering, Faculty of Engineering, American International University-Bangladesh (AIUB), Dhaka 1229, Bangladesh

3. School of Engineering and Energy, Murdoch University, Perth, WA 6150, Australia

4. School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia

5. Electrical Engineering Department, College of Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia

Abstract

Renewable energy sources (RESs) and energy storage schemes (ESSs) integrated into a microgrid (MG) system have been widely used in power generation and distribution to provide a constant supply of electricity. The power electronics converters, particularly the bidirectional power converters (BPCs), are promising interfaces for MG infrastructure because they control the power management of the whole MG system. The controller of BPCs can be designed using several different control strategies. However, all the existing controllers have system stability, dynamics, and power quality issues. Therefore, this study demonstrates the development of an LCL-filtered grid-connected bidirectional AC–DC converter’s (BADC) control strategy based on voltage-oriented control (VOC) to overcome these issues. The proposed VOC-based inner current control loop (ICCL) is implemented in synchronous dq-coordinate with the help of proportional-integral (PI) controllers. An observer-based active damping (AD) is also developed in order to estimate the filter capacitor current from the capacitor voltage instead of directly measuring it. This developed AD system helps to damp the resonance effect of the LCL filter, improves system stability, and also eliminates the practical challenges of measuring capacitor current. The proposed controller with AD is able to realize bidirectional power transfer (BPT) with reduced power losses due to the elimination of passive damping and improved power quality, system dynamics, and stability. The mathematical modeling of the suggested system was developed, and the structure of the system model was established in the MATLAB/Simulink environment. The performance of the proposed system was validated with real-time software-in-the-loop (RT-SIL) simulation using the OPAL-RT simulator for a 16 kVA converter system. The real-time (RT) simulation results show that the BADC with the proposed control scheme can provide better dynamic performance and operate with tolerable total harmonic distortion (THD) of 2.62% and 2.71% for inverter and rectifier modes of operation, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3