A Machine Learning Application for the Energy Flexibility Assessment of a Distribution Network for Consumers

Author:

Rober Jaka1ORCID,Maruša Leon2,Beković Miloš1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia

2. Elektro Celje d.d, Vrunčeva ulica 2a, 3000 Celje, Slovenia

Abstract

This paper presents a step-by-step approach to assess the energy flexibility potential of residential consumers to manage congestion in the distribution network. A case study is presented where a selected transformer station exhibits signs of overloading. An analysis has been performed to evaluate the magnitude of the overloading and the timing of the overload occurrence based on their historical load data. Based on the historical load data, the four most prominent consumers have been chosen for the flexibility assessment. Temperature load dependency has been evaluated for the selected consumers. The paper’s novel approach focuses on selecting individual consumers with the highest energy flexibility potential, and analysing their load patterns to address transformer overloading. To achieve this, machine learning algorithms, specifically, multiple linear regression and support vector machines, were used for load profile forecasting during the overload occurrences. Based on the forecast and measured load patterns, flexibility scenarios were created for each consumer. The generated models were evaluated and compared with the forecasting based on the average load of the past days. In the results, three potential consumers were identified who could resolve the transformer overloading problem. The machine learning models outperformed the average-based forecasting method, providing more realistic estimates of flexibility potential. The proposed approach can be applied to other overloaded transformer stations, but with a limited number of consumers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3