NVH Analysis and Optimization of Construction Hoist Drive System

Author:

Huang Bo1,Tan Bangyu1,Wang Jian1,Liu Kang1,Zhang Yuhang1

Affiliation:

1. School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China

Abstract

The construction hoist drive system is a critical component of the construction hoist, and high speed and low vibration noise are essential development directions. In order to improve the NVH level of the construction hoist drive system, this paper carries out research and analysis of construction hoist drive system excitation, establishes the drive system rigid-flexible coupling dynamics model, and completes the establishment of the vibration and noise model of the drive system, simulation analysis, and optimization work. Ansys Motor CAD 2020 was used to establish the parametric model of the asynchronous motor and it was combined with the virtual work method to calculate Maxwell’s electromagnetic force to arrive at the radial electromagnetic force as the main cause of electromagnetic noise. For the mechanical excitation generated by the gearbox, the time-varying stiffness excitation, mesh shock excitation, and transmission error excitation are considered, and the transmission error of helical gears under different working conditions is calculated by combining it with Romax software 2020. The rigid-flexible coupling model of the construction hoist drive system is established. The load distribution analysis of the unit length of the tooth surface is completed for the first- and third-stage helical gears under different working conditions. The primary source of the drive system excitation is the tooth surface bias load. Based on the dynamic response analysis theory of the vibration superposition method, the maximum vibration speed of the drive system was analyzed by Romax. The maximum noise value of 78.8 dB was calculated from the acoustic power simulation of the drive system using Actran acoustic software 2022 in combination with acoustic theory, and the magnetic density amplitude of the stator teeth of the asynchronous motor was optimized based on the microscopic shaping design of the helical gear by Romax. The vibration and noise simulation of the optimized drive system shows that the vibration value is reduced to 0.75 mm/s, and the maximum noise is reduced to 70.2 dB, which is 10.9% lower than before the optimization. The overall NVH level has been improved. The optimization method to reduce the vibration noise of the drive system is explored, which can be used for vibration noise prediction and control during the development of the construction hoist drive system.

Funder

Sichuan University, Zigong City, special funds for school-local science and technology cooperation

Science and Technology Department of Sichuan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference21 articles.

1. (2009). Acoustics—Determination of Occupational Noise Exposure—Engineering Method (Standard No. ISO 9612:2009).

2. (2019). Construction Machinery and Equipment Noise Measurement Methods and Limit Values (Standard No. JB/T 13712-2019).

3. Research of the motor-reducer integrated system NVH under multi-source excitation;Feng;Mech. Electr. Eng. Mag.,2020

4. Über die Geräuschbildung bei elektrischen Maschinen;Fritze;Arch. Für Elektrotechnik,1921

5. Calculation of the magnetic noise of polyphase induction motors;Alger;J. Acoust. Soc. Am.,1956

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3