An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis

Author:

Li DongmeiORCID,Weng Chaofan,Ruan Yi,Li Kan,Cai Guoan,Song Chenyao,Lin Qiang

Abstract

A chiral sensor with optical rotation detection based on weak measurement for the kinetic study of sucrose hydrolysis is presented. Based on the polarization modulation to the pre-selection state, the optical rotation of chiral sample was accurately determined through the central wavelength shift of the output spectrum. With this approach, the concentration response curves of sucrose and its hydrolysis products, i.e., fructose and glucose, were experimentally obtained for the hydrolysis analysis. By collecting the output spectrum with a frequency of 100 Hz and fitting the central wavelength shift synchronously during the measurement, the sucrose hydrolysis process was monitored in real time. Different hydrolysis conditions with varied concentration of invertase enzyme and citrate were implemented in this work. As a consequence, the real-time hydrolysis curves of the hydrolysis process with distinct velocities was achieved and analyzed. Such a kinetic monitoring about sucrose hydrolysis with optical rotation detection technology played a critical role in the researches involving sucrose, and also revealed the great potential of weak measurement in intersections, such as food safety inspection and chemical analysis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3