NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training

Author:

Lu Binghang1ORCID,Moya Christian2,Lin Guang3ORCID

Affiliation:

1. Department of Computer Science, Purdue University, West Lafayette, IN 47906, USA

2. Department of Mathematics, Purdue University, West Lafayette, IN 47906, USA

3. Department of Mathematics and School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA

Abstract

This paper presents NSGA-PINN, a multi-objective optimization framework for the effective training of physics-informed neural networks (PINNs). The proposed framework uses the non-dominated sorting genetic algorithm (NSGA-II) to enable traditional stochastic gradient optimization algorithms (e.g., ADAM) to escape local minima effectively. Additionally, the NSGA-II algorithm enables satisfying the initial and boundary conditions encoded into the loss function during physics-informed training precisely. We demonstrate the effectiveness of our framework by applying NSGA-PINN to several ordinary and partial differential equation problems. In particular, we show that the proposed framework can handle challenging inverse problems with noisy data.

Funder

National Science Foundation

Brookhaven National Laboratory

U.S. Department of Energy

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference27 articles.

1. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations;Raissi;Science,2020

2. Physics-informed machine learning;Karniadakis;Nat. Rev. Phys.,2021

3. Larsson, S., and Thomée, V. (2003). Partial Differential Equations with Numerical Methods, Springer.

4. Geroch, R. (2017). General Relativity, Routledge.

5. Data-driven discovery of partial differential equations;Rudy;Sci. Adv.,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3