Sulfoxide-Containing Bisabolane Sesquiterpenoids with Antimicrobial and Nematicidal Activities from the Marine-Derived Fungus Aspergillus sydowii LW09

Author:

Yang Xiao12,Yu Hongjia12,Ren Jinwei1,Cai Lei1,Xu Lijian2ORCID,Liu Ling13ORCID

Affiliation:

1. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

2. College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China

3. University of Chinese Academy of Sciences, Beijing 100039, China

Abstract

Phytopathogens, such as phytopathogenic bacteria, fungi, and nematodes, have caused great losses of crops every year, seriously threatening human health and agricultural production. Moreover, marine-derived fungi are abundant sources of structurally unique and bioactive secondary metabolites that could be potential candidates for anti-phytopathogenic drugs. One new sulfoxide-containing bisabolane sesquiterpenoid aspersydosulfoxide A (1) and nine known analogues (2–10) were isolated from the marine-derived A. sydowii LW09. The absolute configuration of the sulfur stereogenic center in 1 was determined by electronic circular dichroism (ECD) calculations. Compound 5 showed inhibition activity against Pseudomonas syringae, with a minimum inhibitory concentration (MIC) value of 32 μg/mL, whereas, compounds 2, 7, and 8 showed antibacterial activities toward Ralstonia solanacarum, with the same MIC value at 32 μg/mL. Meanwhile, compounds 3, 7, and 8 inhibited the fungal spore germination of Fusarium oxysporum, with the half maximal effective concentration (EC50) values of 54.55, 77.16, and 1.85 μg/mL, respectively, while compounds 2, 3, 7, and 8 inhibited the fungal spore germination of Alternaria alternata, which could be induced by vacuolization of germ tubes, with EC50 values of 34.04, 44.44, 26.02, and 46.15 μg/mL, respectively. In addition, compounds 3, 7, and 8 exhibited nematicidal activities against Meloidogyne incognita second-stage juveniles (J2s). In addition, compound 8 possessed the strongest nematicidal activity of nearly 80% mortality at 60 h with the half lethal concentration (LC50) values of 192.40 μg/mL. Furthermore, compounds 3, 7, and 8 could paralyze the nematodes and then impair their pathogenicity.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3