Author:
Jiang Jian,Hei Chuang,Feng Qian,Jiang Jinwei
Abstract
Anchored steel bars have been widely used in retrofitting of existing concrete structures. The bonding strength between the anchored steel bar and the concrete is critical to the integrity of the strengthened concrete structure. This paper presents a method to monitor epoxy-grouted bonding strength development by using a piezoceramic-enabled active sensing technique. One concrete beam with an anchored steel bar was involved in the monitoring test, and two concrete beams with six anchored steel bars were used in the pull-out test. To enable the active sensing, a Lead Zirconate Titanate (PZT) patch was bonded to the surface of the exposed end, and piezoceramic smart aggregates were embedded in each concrete specimen. During the monitoring experiment, signals from PZT sensors and smart aggregates were acquired at intervals of 0, 20, 40, 60, 80, and 100 min. In addition, a pull-out test was performed on each of the remaining six anchored steel bars in the two concrete beams, while the signal was recorded in the test. Furthermore, a wavelet packet analysis was applied to analyze the received signal energies to investigate the bonding strength development between the concrete and the anchored steel bar during the epoxy solidification process. The test results demonstrate the effectiveness of the proposed method in monitoring the bonding strength development between the anchored steel bar and the concrete, using the PZT-enabled active sensing.
Funder
Scientific Research Fund of Institute of Seismology and Institute of Crustal Dynamics, China Earthquake Administration
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献