Mercury Biogeochemistry and Biomagnification in the Mediterranean Sea: Current Knowledge and Future Prospects in the Context of Climate Change

Author:

Bargagli Roberto1,Rota Emilia1ORCID

Affiliation:

1. Department of Physics, Earth and Environmental Sciences, University of Siena, Via P. A. Mattioli, 4, IT-53100 Siena, Italy

Abstract

In the 1970s, the discovery of much higher mercury (Hg) concentrations in Mediterranean fish than in related species of the same size from the Atlantic Ocean raised serious concerns about the possible health effects of neurotoxic monomethylmercury (MMHg) on end consumers. After 50 years, the cycling and fluxes of the different chemical forms of the metal between air, land, and marine environments are still not well defined. However, current knowledge indicates that the anomalous Hg accumulation in Mediterranean organisms is mainly due to the re-mineralization of organic material, which favors the activity of methylating microorganisms and increases MMHg concentrations in low-oxygen waters. The compound is efficiently bio-concentrated by very small phytoplankton cells, which develop in Mediterranean oligotrophic and phosphorous-limited waters and are then transferred to grazing zooplankton. The enhanced bioavailability of MMHg together with the slow growth of organisms and more complex and longer Mediterranean food webs could be responsible for its anomalous accumulation in tuna and other long-lived predatory species. The Mediterranean Sea is a “hotspot” of climate change and has a rich biodiversity, and the increasing temperature, salinity, acidification, and stratification of seawater will likely reduce primary production and change the composition of plankton communities. These changes will likely affect the accumulation of MMHg at lower trophic levels and the biomagnification of its concentrations along the food web; however, changes are difficult to predict. The increased evasion of gaseous elemental mercury (Hg°) from warming surface waters and lower primary productivity could decrease the Hg availability for biotic (and possibly abiotic) methylation processes, but lower oxygen concentrations in deep waters, more complex food webs, and the reduced growth of top predators could increase their MMHg content. Despite uncertainties, in Mediterranean regions historically affected by Hg inputs from anthropogenic and geogenic sources, such as those in the northwestern Mediterranean and the northern Adriatic Sea, rising seawater levels, river flooding, and storms will likely favor the mobilization of Hg and organic matter and will likely maintain high Hg bioaccumulation rates for a long time. Long-term studies will, therefore, be necessary to evaluate the impact of climate change on continental Hg inputs in the Mediterranean basin, on air–sea exchanges, on possible changes in the composition of biotic communities, and on MMHg formation and its biomagnification along food webs. In this context, to safeguard the health of heavy consumers of local seafood, it appears necessary to develop information campaigns, promote initiatives for the consumption of marine organisms at lower trophic levels, and organize large-scale surveys of Hg accumulation in the hair or urine of the most exposed population groups.

Publisher

MDPI AG

Reference110 articles.

1. Biological methylation of mercury in aquatic organisms;Jensen;Nature,1969

2. Il contenuto in rame, zinco, mercurio e piombo di alcune specie ittiche dell’Adriatico;Ciusa;Quad. Merceol.,1971

3. Tenure en mercure dans quelques poissons de consommation courante;Thibaud;Sci. Peche,1971

4. Mercury concentrations in Mediterranean marine organisms and their environment: Natural or anthropogenic origin;Bernhard;Thalass. Jugosl.,1977

5. Comparative studies on trace metal levels ion marine biota. I. Mercury in marine organisms from western Italian coast, the Strait of Gibraltar, and the North Sea;Stoeppler;Sci. Total Environ.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3