The Impact of Occupancy-Driven Models on Cooling Systems in Commercial Buildings

Author:

Nazemi Seyyed Danial,Zaidan Esmat,Jafari Mohsen A.

Abstract

Cooling systems play a key role in maintaining human comfort inside buildings. The key challenges that are facing conventional cooling systems are the rapid growth of total cooling energy and annual electricity consumption in commercial buildings. This is even more significant in countries with an arid climate, where the cooling systems are typically working 80% of the year. Thus, there has been growing interest in developing smart control models to assign optimal cooling setpoints in recent years. In the present work, we propose an occupancy-based control model that is based on a non-linear optimization algorithm to efficiently reduce energy consumption and costs. The model utilizes a Monte-Carlo method to determine the approximate occupancy schedule for building thermal zones. We compare our proposed model to three different strategies, namely: always-on thermostat, schedule-based model, and a rule-based occupancy-driven model. Unlike these three rule-based algorithms, the proposed optimization approach is a white-box model that considers the thermodynamic relationships in the cooling system to find the optimal cooling setpoints. For comparison, different case studies in five cities around the world were investigated. Our findings illustrate that the proposed optimization algorithm is able to noticeably reduce the cooling energy consumption of the buildings. Significantly, in cities that were located in severe hot regions, such as Doha and Phoenix, cooling energy consumption can be reduced by 14.71% and 15.19%, respectively.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3