Effect of Permeability on Hydrate-Bearing Sediment Productivity and Stability in Ulleung Basin, East Sea, South Korea

Author:

Kim Jung-TaeORCID,Kang Chul-Whan,Kim Ah-Ram,Lee Joo Yong,Cho Gye-ChunORCID

Abstract

Methane hydrate has attracted attention as a next-generation resource, and many researchers have conducted various studies to estimate its productivity. Numerical simulation is the optimal method for estimating methane gas productivity. Meanwhile, using a reasonable input parameter is essential for obtaining accurate numerical modeling results. Permeability is a geotechnical property that exhibits the greatest impact on productivity. The permeability of hydrate-bearing sediment varies based on the sediment pore structure and hydrate saturation. In this study, an empirical permeability model was derived from experimental data using soil specimens from the Ulleung Basin, and the model was applied in numerical analysis to evaluate the sediment gas productivity and ground stability. The gas productivity and stability of hydrate-bearing sediments were compared by applying a widely used permeability model and the proposed model to a numerical model. Additionally, a parametric study was performed to examine the effects of initial hydrate saturation on the sediment gas productivity and stability. There were significant differences in the productivity and stability analysis results according to the proposed permeability model. Therefore, it was found that for accurate numerical analysis, a regional permeability model should be applied.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3