Assessment of High-Electrification UK Scenarios with Varying Levels of Nuclear Power and Associated Post-Fault Behaviour

Author:

Hadri MohamedORCID,Trovato VincenzoORCID,Bialecki Agnes,Merk Bruno,Peakman AidenORCID

Abstract

Renewable integration into the electricity system of Great Britain (GB) is causing considerable demand for additional flexibility from plants. In particular, a considerable share of this flexibility may be dispatched to secure post-fault transient frequency dynamics. Pursuant to the unprecedented changes to the traditional portfolio of generation sources, this work presents a detailed analysis of the potential system-level value of unlocking flexibility from nuclear electricity production. A rigorous enhanced mixed integer linear programming (MILP) unit commitment formulation is adopted to simulate several generation-demand scenarios where different layers of flexibility are associated to the operation of nuclear power plants. Moreover, the proposed optimisation model is able to assess the benefit of the large contribution to the system inertial response provided by nuclear power plants. This is made possible by considering a set of linearised inertia-dependent and multi-speed constraints on post fault frequency dynamics. Several case studies are introduced considering 2050 GB low-carbon scenarios. The value of operating the nuclear fleet under more flexible paradigms is assessed, including environmental considerations quantified in terms of system-level CO2 emissions’ reduction.

Funder

Department for Business, Energy and Industrial Strategy, UK Government

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3