Energy-Saving Hot Open Die Forging Process of Heavy Steel Forgings on an Industrial Hydraulic Forging Press

Author:

Dindorf RyszardORCID,Wos PiotrORCID

Abstract

The study deals with the energy-saving process of hot open die elongation forging of heavy steel forgings on an 80 MN industrial hydraulic forging press. Three innovative energy-saving power supply solutions useful for industrial hydraulic forging presses were analyzsed. The energy-saving power supply of hydraulic forging presses consists in reducing electricity consumption by the electric motor driving the pumps, reducing the noise emitted by pumps and reducing leaks in hydraulic piston cylinders. The predicted forging force as a function of heavy steel forging heights for various deformation temperatures and strain rates was determined. A simulation model of the 80 MN hydraulic forging press is presented, which is useful for determining the time-varying parameters during the forging process. An energy-saving control for the hydraulic forging press based on the forging process parameters’ prediction has been developed. Real-time model predictive control (MPC) was developed based on multiple inputs multiple outputs (MIMO), and global predictive control (GPC). The GPC has been implemented in the control system of an 80 MN industrial hydraulic forging press. The main advantage of this control system is the repeatability of the forging process and minimization of the size deviation of heavy large steel forgings

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. Global Forging Market 2018–2022,2019

2. Forging;Gregor,2014

3. Analysis of Deformation and Damage Evolution in Hot Elongation Forging

4. Real-Time Process Characterization of Open Die Forging for Adaptive Control

5. Prediction and simulation of axisymmetric forging load of aluminum;Nefissi;Adv. Prod. Eng. Manag.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3