Research on Parameter Self-Learning Unscented Kalman Filtering Algorithm and Its Application in Battery Charge of State Estimation

Author:

Liu FangORCID,Ma Jie,Su Weixing,Chen Hanning,He Maowei

Abstract

A novel state estimation algorithm based on the parameters of a self-learning unscented Kalman filter (UKF) with a model parameter identification method based on a collaborative optimization mechanism is proposed in this paper. This algorithm can realize the dynamic self-learning and self-adjustment of the parameters in the UKF algorithm and the automatic optimization setting Sigma points without human participation. In addition, the multi-algorithm collaborative optimization mechanism unifies a variety of algorithms, so that the identification method has the advantages of member algorithms while avoiding the disadvantages of them. We apply the combination algorithm proposed in this paper for state of charge (SoC) estimation of power batteries and compare it with other model parameter identification algorithms and SoC estimation methods. The results showed that the proposed algorithm outperformed the other model parameter identification algorithms in terms of estimation accuracy and robustness.

Funder

National key research and development plan project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3