Establishing Boundary Conditions Considering Influence Factors of the Room Equipped with a Ceiling Radiant Cooling Panel

Author:

Park Sang-HoonORCID,Kim Dong-WooORCID,Joe Goo-Sang,Ryu Seong-Ryong,Yeo Myoung-Souk,Kim Kwang-Woo

Abstract

The objective of this study is to establish boundary conditions to evaluate the cooling capacity of the Cooling Radiant Ceiling Panel (CRCP) considering the environment of a room equipped with the CRCP. The current study investigated the boundary conditions and derivation techniques from previous studies. Based on the results of the analysis, a heat transfer model was derived for a room fitted with CRCP. In addition, the heat transfer model was used to derive the factors affecting the cooling capacity of the CRCP and each factor was simulated and verified through this model. The effects of these factors on the capacity of the CRCP was established by using various boundary conditions. To verify the validity of the simulation model, the experimental results were compared with the cooling capacity for a specific case. As a result, it was established that even for the same panel, there was a variance in the cooling capacity of the CRCP based on the boundary conditions and that the influence of the surface exposed to the outdoors had more implications. Consequently, this study presents the influence factors to be considered when designing CRCP.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

1. Thermal comfort and energy consumption of the radiant ceiling panel system.

2. Experimental evaluation of energy savings in air-conditioning using metal ceiling panels

3. Experimental study of thermal condition in a room with hydronic cooling radiant surfaces

4. Standard 138-2009, Method of Testing for Rating Ceiling Panels for Sensible Heating and Cooling,2009

5. Water Based Surface Embedded Heating and Cooling Systems—Part 2: Floor Heating: Prove Methods for the Determination of the Thermal Output Using Calculation and Test Methods,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3