Determining the Position of the Brushless DC Motor Rotor

Author:

Kolano KrzysztofORCID

Abstract

In brushless direct current (or BLDC) motors with more than one pole pair, the status of standard shaft position sensors assumes the same distribution several times for its full mechanical rotation. As a result, a simple analysis of the signals reflecting their state does not allow any determination of the mechanical position of the shaft of such a machine. This paper presents a new method for determining the mechanical position of a BLDC motor rotor with a number of pole pairs greater than one. In contrast to the methods used so far, it allows us to determine the mechanical position using only the standard position sensors in which most BLDC motors are equipped. The paper describes a method of determining the mechanical position of the rotor by analyzing the distribution of errors resulting from the accuracy proposed by the BLDC motor’s Hall sensor system. Imprecise indications of the rotor position, resulting from the limited accuracy of the production process, offer a possibility of an indirect determination of the rotor’s angular position of such a machine.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Fuzzy Logic Controller Based BLDC Motor;Green Energy and Technology;2024

2. E-Bike Controller: Modelling and Simulation of Hysteresis Current Control based BLDC Drive;2023 International Conference on Next Generation Electronics (NEleX);2023-12-14

3. A Novel Approach to Energy-Optimized Variable-Speed Sensorless-Based Brushless DC Motors (BLDC) Control for Automotive Wiper Applications;Arabian Journal for Science and Engineering;2023-05-09

4. Modeling and research of methods for speed and torque control of DC motors;PRZEGLĄD ELEKTROTECHNICZNY;2023-03-10

5. Design of Real-Time Automatic Drainage Cleaning and Monitoring System using IoT;2023 7th International Conference on Computing Methodologies and Communication (ICCMC);2023-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3