MCMS-STM: An Extension of Support Tensor Machine for Multiclass Multiscale Object Recognition in Remote Sensing Images

Author:

Gao Tong,Chen Hao,Chen Wen

Abstract

The support tensor machine (STM) extended from support vector machine (SVM) can maintain the inherent information of remote sensing image (RSI) represented as tensor and obtain effective recognition results using a few training samples. However, the conventional STM is binary and fails to handle multiclass classification directly. In addition, the existing STMs cannot process objects with different sizes represented as multiscale tensors and have to resize object slices to a fixed size, causing excessive background interferences or loss of object’s scale information. Therefore, the multiclass multiscale support tensor machine (MCMS-STM) is proposed to recognize effectively multiclass objects with different sizes in RSIs. To achieve multiclass classification, by embedding one-versus-rest and one-versus-one mechanisms, multiple hyperplanes described by rank-R tensors are built simultaneously instead of single hyperplane described by rank-1 tensor in STM to separate input with different classes. To handle multiscale objects, multiple slices of different sizes are extracted to cover the object with an unknown class and expressed as multiscale tensors. Then, M-dimensional hyperplanes are established to project the input of multiscale tensors into class space. To ensure an efficient training of MCMS-STM, a decomposition algorithm is presented to break the complex dual problem of MCMS-STM into a series of analytic sub-optimizations. Using publicly available RSIs, the experimental results demonstrate that the MCMS-STM achieves 89.5% and 91.4% accuracy for classifying airplanes and ships with different classes and sizes, which outperforms typical SVM and STM methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3