Assessing Waterlogging Stress Level of Winter Wheat from Hyperspectral Imagery Based on Harmonic Analysis

Author:

Yang FeifeiORCID,Liu Shengping,Wang QiyuanORCID,Liu Tao,Li Shijuan

Abstract

Frequent waterlogging disasters can have serious effects on regional ecology, food safety, and socioeconomic sustainable development. Early monitoring of waterlogging stress levels is vital for accurate production input management and reduction of crop production-related risks. In this study, a pot experiment on winter wheat was designed using three varieties and seven gradients of waterlogging stress. Hyperspectral imagery of the winter wheat canopy in the jointing stage, heading stage, flowering stage, filling stage, and maturation stage were measured and then classified. Wavebands of imaging data were screened. Waterlogging stress level was assessed by a combined harmonic analysis method, and application of this method at field scale was discussed preliminarily. Results show that compared to the k-nearest neighbor and support vector machine algorithms, the random forest algorithm is the best batch classification method for hyperspectral imagery of potted winter wheat. It can recognize waterlogging stress well in the wavebands of red absorption valley (RW: 640–680 nm), red-edge (RE: 670–737 nm), and near-infrared (NIR: 700–900 nm). In the RW region, amplitudes of the first three harmonic sub-signals (c1, c2, and c3) can be used as indexes to recognize the waterlogging stress level that each winter wheat variety undertakes. The third harmonic sub-signal amplitude c3 of the RE region is also suitable for judging stress levels of JM31 (one of the three varieties which is highly sensitive to water content). This study has important theoretical significance and practical application values related to the accurate control of waterlogging stress, and functions as a new method to monitor other types of environmental stress levels such as drought stress, freezing stress, and high-temperature stress levels.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3