Post-Shock Gravitational Erosion and Sediment Yield: A Case Study of Landscape Transformation along the Wenchuan–Yingxiu Section of the Minjiang River, Sichuan, China

Author:

Han Yongshun1,Wang Zhenlin1ORCID,Chang Yulong1,Zhang Dongshui1,Li Lelin1ORCID,Qiu Zhuoting1,Xia Yangdelong1

Affiliation:

1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

In Wenchuan, China, which was severely affected by an M8.1 earthquake in 2008, the geomorphic process has been driven by gravitational erosion brought on by post-shock rockfalls and landslides. However, a process-based delineation of the post-shock landscape modification using quantitative methods employing mathematical modeling and control experiments has not yet been successfully undertaken. This is due to the areas’ substantial sediment yield and growing transportation capacity. This study looked into 31 minor watersheds along the Minjiang River’s Wenchuan–Yingxiu stretch. Additionally, a digital gully model based on multi-source remote sensing, Geographic Information System (GIS), Differential Intereferometric Synthetic Aperture Radar (D-InSAR), and amplitude tracking technology was created for the quantitative estimation of post-shock gravity erosion and sediment yield by comparison of three-dimensional topographical alternation (before and after the shock). Following regression analysis, a useful model for sediment yield estimation was suggested. The following conclusions were reached: (1) There was a considerable favorable effect between an angle of 50 and 70 degrees, and various geomorphological parameters had scale effects. Gravitational sediment yield modulus displayed a positive power function relationship with relative relief and surface fragmentation, but there was no clear correlation between the modulus and slope, relative relief, or surface fragmentation at the watershed scale; (2) Both the budget for post-shock geo-materials and the production of sediment from gravity erosion showed an annual trend of decline; (3) A 10–20-year active period would be recognized by gravity erosion.

Funder

National Key Research and Development Program

Major scientific research projects of Hunan Provincial Institute of Geology

Key Laboratory of Early Rapid Identification, Prevention and Control of Geological Diseases in Traffic Corridor of High Intensity Earthquake Mountainous Area of Yunnan Province

Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3