A Sub-Bottom Type Adaption-Based Empirical Approach for Coastal Bathymetry Mapping Using Multispectral Satellite Imagery

Author:

Ji Xue123ORCID,Ma Yi14,Zhang Jingyu14ORCID,Xu Wenxue4ORCID,Wang Yanhong4

Affiliation:

1. Technology Innovation Center for Ocean Telemetry, Ministry of Natural Resources, Qingdao 266061, China

2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan 430079, China

3. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

4. First Institute of Oceanology, Ministry of Natural Resources, Qingdao 266061, China

Abstract

Accurate bathymetric data in shallow water is of increasing importance for navigation safety, coastal management, and marine transportation. Satellite-derived bathymetry (SDB) is widely accepted as an effective alternative to conventional acoustic measurements in coastal areas, providing high spatial and temporal resolution combined with extensive repetitive coverage. Many previous empirical SDB approaches are unsuitable for precision bathymetry mapping in various scenarios, due to the assumption of homogeneous bottom over the whole region, as well as the neglect of various interfering factors (e.g., turbidity) causing radiation attenuation. Therefore, this study proposes a bottom-type adaption-based SDB approach (BA-SDB). Under the consideration of multiple factors including suspended particulates and phytoplankton, it uses a particle swarm optimization improved LightGBM algorithm (PSO-LightGBM) to derive depth of each pre-segmented bottom type. Based on multispectral images of high spatial resolution and in situ observations of airborne laser bathymetry and multi-beam echo sounder, the proposed approach is applied in shallow water around Yuanzhi Island, and achieves the highest accuracy with an RMSE value of 0.85 m compared to log-ratio, multi-band, and classical machine learning methods. The results of this study show that the introduction of water-environment parameters improves the performance of the machine learning model for bathymetric mapping.

Funder

open fund of Technology Innovation Center for Ocean Telemetry, Ministry of Natural Resources

open research fund program of LIESMARS

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3