Monitoring Surface Subsidence Using Distributed Scatterer InSAR with an Improved Statistically Homogeneous Pixel Selection Method in Coalfield Fire Zones

Author:

Tian Zeming1,Fan Hongdong1,Cao Fei2,He Long1

Affiliation:

1. Key Laboratory of Land Environment and Disaster Monitoring, Ministry of Natural Resources, China University of Mining and Technology, Xuzhou 221116, China

2. Xinjiang Uygur Autonomous Region Mine Safety Service Guarantee Center, Urumqi 830063, China

Abstract

Statistically homogeneous pixel (SHP) selection is an important process in the distributed scatterer interferometric synthetic aperture radar (DS-InSAR) approach. However, prevalent methods struggle to appropriately balance the efficiency and accuracy of selection. To solve this problem, the authors of this study improved the Hypothesis Test of Confidence Interval (HTCI) to propose an adaptive method to select the level of saliency and confidence interval for the HTCI, called Adp-HTCI. The proposed method can accurately select homogeneous pixels while inheriting the high efficiency of the HTCI. Once homogeneous pixels have been chosen, the eigenvalue decomposition of the covariance matrix is used to optimize their phase and perform temporal processing. We used the proposed method along with data on 31 scenes from the Sentinel-1 satellite from 2 June 2021 to 28 May 2022 to monitor the deformation of the surface of the fire zone in the Sikeshu coalfield. The selection results of homogeneous pixels indicate that the proposed Adp-HTCI algorithm can increase the number of selected homogeneous pixels while ensuring the accuracy of the selection results, thereby enhancing the estimation accuracy and reliability of subsequent parameter solving. The DS-InSAR results showed that the cumulative maximum subsidence in the study area within a year reached—138 mm and the point density used by the DS-InSAR approach was 17.28 times higher than that used by the StaMPS approach. The results of cross-analysis with the results of StaMPS verified the accuracy of the DS-InSAR-based approach.

Funder

Key Laboratory of Land satellite Remote sensing Application, Ministry of Natural Resources of the People’s Republic of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3