Soil Moisture Retrieval in Bare Agricultural Areas Using Sentinel-1 Images

Author:

Ettalbi Mouad123ORCID,Baghdadi Nicolas1ORCID,Garambois Pierre-André2ORCID,Bazzi Hassan45ORCID,Ferreira Emmanuel3,Zribi Mehrez6ORCID

Affiliation:

1. INRAE, UMR TETIS, Université de Montpellier, 34090 Montpellier, France

2. INRAE, UMR RECOVER, Aix-Marseille Université, 13182 Aix-en-Provence, CEDEX 5, France

3. AIWAY, Mercure A, 565 rue Marcellin Berthelot, 13851 Aix-en-Provence, CEDEX 3, France

4. Université Paris-Saclay, AgroParisTech, INRAE, UMR 518 MIA Paris-Saclay, 91120 Palaiseau, France

5. Atos France, Technical Services, 80 Quai Voltaire, 95870 Bezons, France

6. CESBIO (CNES/CNRS/INRAE/IRD/UPS), 18 Av. Edouard Belin, bpi 2801, 31401 Toulouse, CEDEX 9, France

Abstract

Soil moisture maps are essential for hydrological, agricultural and risk assessment applications. To best meet these requirements, it is essential to develop soil moisture products at high spatial resolution, which is now made possible using the free Sentinel-1 (S1) SAR (Synthetic Aperture Radar) data. Some soil moisture retrieval techniques using S1 data relied on the use of a priori weather information in order to increase the precision of soil moisture estimates, which required access to a weather-forecasting framework. This paper presents an improved and fully autonomous solution for high-resolution soil moisture mapping in bare agricultural areas. The proposed solution derives a priori weather information directly from the original Sentinel images, thus bypassing the need for a weather forecasting framework. For soil moisture estimation, the neural network technique was implemented to ensure the optimum integration of radar information. The neural networks were trained using synthetic data generated by the modified Integral Equation Model (IEM) model and validated on real data from two study sites in France and Tunisia. The main findings showed that the use of a radar signal averaged over grids of a few km2 in addition to radar signal at plot scale instead of a priori weather information provides good soil moisture estimations. The accuracy is even slightly better compared to the accuracy obtained using a priori weather information.

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference30 articles.

1. Natural Disasters-Origins, Impacts, Management;Chaudhary;Encyclopedia,2021

2. Baghdadi, N., and Zribi, M. (2016). Characterization of Soil Surface Properties Using Radar Remote Sensing. Land Surf. Remote Sens. Cont. Hydrol., 1–39.

3. Ulaby, F.T., Moore, R.K., and Fung, A.K. (1981). International Microwave Remote Sensing Fundamentals and Radiometry, Artech House.

4. Measuring Soil Moisture with Imaging Radars;Dubois;Int. IEEE Trans. Geosci. Remote Sens.,1995

5. Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields;Holah;Remote Sens. Environ.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Use of Machine Learning and Remote Sensing Data for Land Cover and Moisture Classification;2023 IEEE Afro-Mediterranean Conference on Artificial Intelligence (AMCAI);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3