Deep Reinforcement Learning-Based Power Allocation for Minimizing Age of Information and Energy Consumption in Multi-Input Multi-Output and Non-Orthogonal Multiple Access Internet of Things Systems

Author:

Wu Qiong12ORCID,Zhang Zheng12,Zhu Hongbiao12,Fan Pingyi3ORCID,Fan Qiang4ORCID,Zhu Huiling5ORCID,Wang Jiangzhou5ORCID

Affiliation:

1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China

2. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China

3. Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China

4. Qualcomm, San Jose, CA 95110, USA

5. School of Engineering, University of Kent, Canterbury CT2 7NT, UK

Abstract

Multi-input multi-output and non-orthogonal multiple access (MIMO-NOMA) Internet-of-Things (IoT) systems can improve channel capacity and spectrum efficiency distinctly to support real-time applications. Age of information (AoI) plays a crucial role in real-time applications as it determines the timeliness of the extracted information. In MIMO-NOMA IoT systems, the base station (BS) determines the sample collection commands and allocates the transmit power for each IoT device. Each device determines whether to sample data according to the sample collection commands and adopts the allocated power to transmit the sampled data to the BS over the MIMO-NOMA channel. Afterwards, the BS employs the successive interference cancellation (SIC) technique to decode the signal of the data transmitted by each device. The sample collection commands and power allocation may affect the AoI and energy consumption of the system. Optimizing the sample collection commands and power allocation is essential for minimizing both AoI and energy consumption in MIMO-NOMA IoT systems. In this paper, we propose the optimal power allocation to achieve it based on deep reinforcement learning (DRL). Simulations have demonstrated that the optimal power allocation effectively achieves lower AoI and energy consumption compared to other algorithms. Overall, the reward is reduced by 6.44% and 11.78% compared the to GA algorithm and random algorithm, respectively.

Funder

National Natural Science Foundation of China

State Key Laboratory of Integrated Services Networks

National Key Research and Development Program of China

111 project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Optimization Scheme of Packet Collision Probability Reduction for C-V2X Mode 4 in Smart Vehicular Communication Systems;2024 9th International Conference on Computer and Communication Systems (ICCCS);2024-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3