An Array SPRi Biosensor for the Determination of Follicle-Stimulating Hormone in Blood Plasma

Author:

Sankiewicz Anna1,Zelazowska-Rutkowska Beata2ORCID,Lukaszewski Zenon3ORCID,Hermanowicz Adam4ORCID,Gorodkiewicz Ewa1

Affiliation:

1. Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland

2. Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, 15-274 Bialystok, Poland

3. Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland

4. Department of Pediatric Surgery and Urology, Medical University of Bialystok, 15-274 Bialystok, Poland

Abstract

Follicle-stimulating hormone (FSH) regulates the development, growth, pubertal maturation and reproductive processes of the human body. The determination of serous FSH concentration is significant as an alternative to testicular biopsy in the case of boys suffering from cryptorchidism after orchidopexy, and as a means of determining the menopausal stage in women. The aim of this investigation is to develop a specific array surface plasmon resonance imaging (SPRi) biosensor for the determination of FSH in body liquids such as blood plasma, obtaining sufficient sensitivity to determine FSH at levels characteristic for that hormone in blood plasma, without any signal enhancement. The biosensor consists of a mouse monoclonal anti-FSH antibody attached to the gold surface of a chip via a cysteamine linker. Its linear response range is from 0.08 mIU mL−1 (LOQ) to 20 mIU mL−1, and well covers most of the range of FSH activities found in blood without dilution. The precision of measurement is between 3.2% and 13.1% for model samples, and between 3.7% and 5.6% for spiked plasma samples. Recoveries are in the range from 94% to 108%. The biosensor has good selectivity, and is validated by comparison with ECLE, with good agreement of the results

Funder

Polish Ministry of Education and Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3