Abstract
Artificial ecological corridors (AECs) are internationally approved ecological restoration and climate mitigation strategies. The width and recovery time indices of AECs directly affect the restoration efficiency of degraded soil nutrients. However, there is a lack of comprehensive and quantitative evaluation research on the construction factors of AECs from the perspective of soil fertility improvement. This research aimed to examine the critical ecological corridor construction factors affecting Mollisols’ eco-chemometrics and give a scientific scope. We collected 55 Mollisol samples at different restoration years (0–35 years) and different distances (0–280 m) from the AEC of the Ashi River, a typical Mollisol restoration area in Harbin, and the cold regions of China. We measured the distances, restoration years, soil thickness, pH, electrical conductivity (EC), cation exchange capacity (CEC), soil total organic carbon (SOC), soil total organic matter (SOM), dry matter content (DMC), and the proportion of nitrogen (TN), phosphorus (TP) and potassium (TK). The results are as follows: (1) Within the AEC, there were significant differences in soil stoichiometric characteristics in different restoration years and locations; after restoration for 10–35 years, the soil stoichiometric characteristics reach or exceed the reference value of Mollisols. (2) It is feasible to restore large-scale degraded Mollisols through ecological corridors. In this recovery process, the soil nutrients first decreased, then increased, and finally reached and exceeded the reference value of normal Mollisols. (3) Soil nutrient accumulation was related to ecological corridor width and recovery time. The recommended unilateral width of the ecological corridor based on Mollisols’ CEC and SOC indices for restoration is 175–225 m, and the restoration period is 22.7–35 years based on Mollisols’ EC and SOC indices for restoration. This study demonstrated the change mechanism of Mollisols in AECs based on recovery time and location, and provided the basis for the Chinese government to formulate policies for Mollisol remediation.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献