Seed Dispersal Models for Natural Regeneration: A Review and Prospects

Author:

Kim MoonilORCID,Lee Seonghun,Lee SongheeORCID,Yi KoongORCID,Kim Hyung-SubORCID,Chung Sanghoon,Chung JunmoORCID,Kim Hyun Seop,Yoon Tae KyungORCID

Abstract

Natural regeneration in forest management, which relies on artificial planting, is considered a desirable alternative to reforestation. However, there are large uncertainties regarding the natural regeneration processes, such as seed production, seed dispersal, and seedling establishment. Among these processes, seed dispersal by wind must be modeled accurately to minimize the risks of natural regeneration. This study aimed to (1) review the main mechanisms of seed dispersal models, their characteristics, and their applications and (2) suggest prospects for seed dispersal models to increase the predictability of natural regeneration. With improving computing and observation systems, the modeling technique for seed dispersal by wind has continued to progress steadily from a simple empirical model to the Eulerian-Lagrangian model. Mechanistic modeling approaches with a dispersal kernel have been widely used and have attempted to be directly incorporated into spatial models. Despite the rapid development of various wind-dispersal models, only a few studies have considered their application in natural regeneration. We identified the potential attributes of seed dispersal modeling that cause high uncertainties and poor simulation results in natural regeneration scenarios: topography, pre-processing of wind data, and various inherent complexities in seed dispersal processes. We suggest that seed dispersal models can be further improved by incorporating (1) seed abscission mechanisms by wind, (2) spatiotemporally complex wind environments, (3) collisions with the canopy or ground during seed flight, and (4) secondary dispersal, long-distance dispersal, and seed predation. Interdisciplinary research linking climatology, biophysics, and forestry would help improve the prediction of seed dispersal and its impact on natural regeneration.

Funder

Forest Technology and Management Research Center of the National Institute of Forest Science

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3