An Intelligence Method for Recognizing Multiple Defects in Rail

Author:

Deng Fei,Li Shu-Qing,Zhang Xi-Ran,Zhao Lin,Huang Ji-Bing,Zhou Cheng

Abstract

Ultrasonic guided waves are sensitive to many different types of defects and have been studied for defect recognition in rail. However, most fault recognition algorithms need to extract features from the time domain, frequency domain, or time-frequency domain based on experience or professional knowledge. This paper proposes a new method for identifying many different types of rail defects. The segment principal components analysis (S-PCA) is developed to extract characteristics from signals collected by sensors located at different positions. Then, the Support Vector Machine (SVM) model is used to identify different defects depending on the features extracted. Combining simulations and experiments of the rails with different kinds of defects are established to verify the effectiveness of the proposed defect identification techniques, such as crack, corrosion, and transverse crack under the shelling. There are nine channels of the excitation-reception to acquire guided wave detection signals. The results show that the defect classification accuracy rates are 96.29% and 96.15% for combining multiple signals, such as the method of single-point excitation and multi-point reception, or the method of multi-point excitation and reception at a single point.

Funder

the National Natural Science Foundation of China

Shanghai Alliance Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Summary of inspection and monitoring technology for railway rail defects and damage;Tian;Chin. J. Sci. Instrum.,2016

2. Rail base corrosion problem for North American transit systems

3. Introduction to the damage tolerance behaviour of railway rails – a review

4. Evaluation of Railway Rails with Non-Destructive Techniques

5. Summary of non-destructive testing and evaluation technology for rail defects;Zhang;Chin. J. Sci. Instrum.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3