Downscaling of SMAP Soil Moisture in the Lower Mekong River Basin

Author:

Dandridge Chelsea,Fang Bin,Lakshmi Venkat

Abstract

In large river basins where in situ data were limited or absent, satellite-based soil moisture estimates can be used to supplement ground measurements for land and water resource management solutions. Consistent soil moisture estimation can aid in monitoring droughts, forecasting floods, monitoring crop productivity, and assisting weather forecasting. Satellite-based soil moisture estimates are readily available at the global scale but are provided at spatial scales that are relatively coarse for many hydrological modeling and decision-making purposes. Soil moisture data are obtained from NASA’s soil moisture active passive (SMAP) mission radiometer as an interpolated product at 9 km gridded resolution. This study implements a soil moisture downscaling algorithm that was developed based on the relationship between daily temperature change and average soil moisture under varying vegetation conditions. It applies a look-up table using global land data assimilation system (GLDAS) soil moisture and surface temperature data, and advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and land surface temperature (LST). MODIS LST and NDVI are used to obtain downscaled soil moisture estimates. These estimates are then used to enhance the spatial resolution of soil moisture estimates from SMAP 9 km to 1 km. Soil moisture estimates at 1 km resolution are able to provide detailed information on the spatial distribution and pattern over the regions being analyzed. Higher resolution soil moisture data are needed for practical applications and modelling in large watersheds with limited in situ data, like in the Lower Mekong River Basin (LMB) in Southeast Asia. The 1 km soil moisture estimates can be applied directly to improve flood prediction and assessment as well as drought monitoring and agricultural productivity predictions for large river basins.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3