The Effects of Soil Porosity and Mix Design of Volcanic Ash-Based Geopolymer on the Surface Strength of Highly Wind Erodible Soils

Author:

Mohebbi Hamid Reza,Javadi Akbar A.,Azizkandi Alireza Saeedi

Abstract

Surface stabilization of loose, non-cohesive, and fine soils has always been a challenging task for geotechnical engineers. These soils show meager mechanical behavior and are very vulnerable to wind erosion. Many attempts have been made to combat wind erosion of soils. These attempts, including a variety of soil surface amendment methods, have faced complications in terms of financial efficacy, reduced long-term behavior at elevated temperatures, and limitations in stabilization of a wide range of soil types. The application of geopolymers for surface stabilization is a novel approach, which has its own challenges in terms of selecting an appropriate precursor type, mix design, and preparation method. This study evaluated the challenges of using volcanic ash (VA)-based geopolymer, through the 1 Phase (1P) method for stabilization of two silty and sandy soils. A series of uniaxial compressive strength (UCS) and penetrometer tests were performed on cylindrical specimens and soil surface-treated samples, respectively, to evaluate the resistance of treated samples with different porosities. Moreover, the rheological behavior of geopolymer paste having various binder-to-activator ratios is discussed. The available rheological characteristics of geopolymer in this study fit well with the Bingham model. It was found that, despite the minimal crust thickness formed on the topsoil, significant surface resistance is acquired. The results show notable performance of the 1P method for surface amendment of both the silty and sandy soil samples.

Funder

EC

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference40 articles.

1. Experimental Investigation on the Deformation and Noncoaxial Characteristics of Fiber-Reinforced Aeolian Soil under Traffic Load;Int. J. Géoméch.,2022

2. Dissimilarity Between Dust, Heat, and Momentum Turbulent Transports During Aeolian Soil Erosion;J. Geophys. Res. Atmos.,2019

3. Soil property effects on wind erosion of organic soils;Aeolian Res.,2013

4. Pye, K., and Tsoar, H. (2008). Aeolian Sand and Sand Dunes, Springer Science & Business Media.

5. Surface Stabilization of Soils Susceptible to Wind Erosion Using Volcanic Ash–Based Geopolymer;J. Mater. Civ. Eng.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3