Abstract
The charge distribution (CD) and the bond valence sum (BVS) methods are used to calculate the charges assignable to atomic positions in crystal structures, based on the distribution of bond lengths. Discrepancies between calculated and formal charges may point to errors in the determination of atomic coordinates, in the initial allocation of oxidation numbers, occupancies, or site populations. Unlike the BVS method, which has been frequently used for the validation and interpretation of sulfosalt crystal structures, the CD method has been scarcely and limitedly employed for this group of minerals. In this paper, the applicability of the CD method to sulfosalts is practically tested for the first time. The calculation is made using ECoN21—a novel software tool designed for CD, BVS, and general coordination geometry analysis of crystal structures. The program addresses normal valence compounds with distorted homoligand or heteroligand polyhedra in both cation- and anion-centered descriptions. The program is also able to calculate a comprehensive set of parameters describing the internal and external distortion of coordination polyhedra. The paper presents the background of the CD, BVS, and coordination geometry calculations, as well as several case studies focusing on various applications of these methods to sulfosalts.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Lazerckerite, Ag3.75Pb4.5(Sb7.75Bi4)S24, from Kutná Hora, Czech Republic: a new Sb–Bi member of the andorite branch of the lillianite homologous series;European Journal of Mineralogy;2024-08-28
2. High-temperature behaviour of fedorite, Na2.5(Ca4.5Na2.5)[Si16O38]F2⋅2.8H2O, from the Murun Alkaline Complex, Russia;Mineralogical Magazine;2023-05-11
3. Holubite, Ag3Pb6(Sb8Bi3)Σ11S24, from Kutná Hora, Czech Republic, a new member of the andorite branch of the lillianite homologous series;Mineralogical Magazine;2023-05-11