Investigation of the Effect of Electrolytes on the Breakaway of Air Bubbles at an Underwater Capillary Using High-Speed Cinematography and Passive Acoustic Techniques

Author:

Chu PengboORCID,Li RonghaoORCID,Lepage Mark,Waters KristianORCID

Abstract

Saline water froth flotation has received increasing attention in recent years due to sustainability-related concerns. Although the presence of electrolytes in these flotation systems is known to produce the desired bubble swarms, i.e., a macroscopic observation, the fundamental mechanism through which the solutes produce such an effect at the microscopic level remains obscure. For example, there is no agreed mechanism (i.e., break-up or coalescence—two major bubble formation mechanisms) of how the effect is achieved. Not only is understanding the impact of electrolytes on the bubble formation mechanisms a fundamental question, but it can also provide insight into the design of more efficient air dispersing mechanisms for saline flotation systems. Previous studies have demonstrated that electrolytes can inhibit coalescence, but their potential impact on break-up remains vague, which is the focus of this study. It is hypothesized that electrolytes have an impact on break-up, and by isolating break-up from coalescence, the effects of electrolytes on break-up can be revealed. A break-up-only bubble formation system was built. Under this condition, any impact from the electrolytes on the produced bubble can be attributed to an impact on break-up. High-speed cinematography and a passive acoustic technique were employed to capture the bubble size, acoustic frequency, and damping ratio during the break-up process. Under the quasi-static condition, an increase in the electrolyte concentration increased the bubble size produced via break-up, contradicting the common observations made for bubble swarms. The break-up imparted an initial capillary wave to the bubble surface, which is correlated with the bending modulus of the air/water interface affected by the electrolytes. No direct correlation was observed between the acoustic damping ratio and that of the capillary wave, suggesting that the electrolytes affect the break-up via a different mechanism from that by surfactants.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3