Authigenic Gypsum Precipitation in the ARAON Mounds, East Siberian Sea

Author:

Koo Hyo Jin,Jang Jeong Kyu,Lee Dong Hun,Cho Hyen Goo

Abstract

Authigenic gypsum has been observed in marine methane hydrate-bearing sediments throughout the last decade. However, changes in mineral composition and gypsum precipitation in methane emission environments have not yet been reported in the Arctic. Expeditions aboard R/V ARAON revealed several mound structures described as active seeps, which were given the name ARAON Mounds (AMs). Core sediments from the AMs provide an excellent opportunity to research authigenic mineral production in the Arctic methane environment. We identified sedimentary units and investigated the mineral composition of gravity cores from the AMs and a background site. The background core ARA09C-St13, obtained between the mound structures, contains five sedimentary units that extend from the Chukchi Rise to Chukchi Basin, and core sediments from the AMs contain three sedimentary units in the same order. The fundamental difference between AMs and the background site is the lack of dolomite and abundance of gypsum in AMs. This gypsum precipitated authigenically in situ based on its morphological features. Precipitation was more closely associated with the absence of dolomite than the location of the sulfate–methane transition according to the vertical distribution of gypsum in the sediment. Chemical weathering and gypsum overgrowth were confirmed on dolomite surfaces recovered from the AMs, suggesting that dolomite dissolution is the primary source of Ca for gypsum precipitation. Dissolution of biological carbonates and ion exclusion may provide Ca for gypsum precipitation, but this mechanism appears to be secondary, as gypsum is present only in sedimentary units containing dolomite. The main sources of sulfate were inferred to be oxidation of H2S and disproportionation of sulfide, as no sulfide other than gypsum was observed. Our findings reveal that gypsum precipitation linked to methane emission in the Arctic Ocean occurs mainly in dolomite-rich sediments, suggesting that gypsum is a suitable proxy for identifying methane hydrate zones in the Arctic Ocean.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3