Author:
Chi Naijie,Han Zuozhen,Tian Ruicong,Liu Chuan’e,Shan Wei,Xiong Yuqiang,Li Zengsheng,Xie Yufeng,Li Min,Wang Xiufeng
Abstract
The Jiaodong Peninsula is the most important gold mineralization area in China, and the formation of gold deposits is closely related to granitoids. The isotopic ages of the Early Cretaceous granodiorites in the northwestern Jiaodong Peninsula are concentrated in the range of 111~123 Ma, and are coeval with the formation of the gold deposits in the area. However, the studies on the geotectonic settings of the granodiorites, especially their petrogenesis and relationship with gold deposits in the northwestern Jiaodong Peninsula, are scarce. Based on field and petrographic observations, geochemistry, EPMA analysis, zircon U-Pb chronology, and Sr-Nd isotopes of the Early Cretaceous Zhouguan granodiorite in the Jiaodong area, the formation age of Zhouguan granodiorite is determined as 115 Ma ± 0.77 Ma; the analysis of EPMA shows that biotite is mainly composed of Fe-biotite and Mg-biotite, with its MgO content ranging from 9.797% to 11.635%. The crystallization temperature of biotite is in the range of 500 °C~625 °C and the emplacement depth of the rock mass is 3.98~8.71 km. The amphibole in the mass mainly includes magnesiohornblende, pargasite, and magnesiosadanagaite; among them, the former two are of crustal origin, while magnesiosadanagaite is of mantle origin. The crystallization pressure and depth of the former two are in the range of 0.75~3.02 kbar and 2.81~11.4 km, respectively, while the crystallization pressure and depth for the latter is 4.64 kbar and 17.53 km, respectively. The (87Sr/86Sr) values range from 0.710424 to 0.711074 and the (143Nd/144Nd) values range from 0.511530 to 0.511808. The parental magma of the Zhouguan granodiorite is highly oxidized with high-water content that is favorable for Au enrichment. Combined with the Nb-Y and Yb-Ta diagrams, a model describing the formation of Zhouguan granodiorite is proposed.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献