Abstract
The timing of the Lhasa–Qiangtang collision following the closure of the Bangong–Nujiang Tethys Ocean has not been well constrained. An integrated study of whole-rock geochemistry and zircon U–Pb–Hf isotopes was carried out for Early Cretaceous quartz diorite-porphyrites and granites from the Yilashan and Amdo areas, northern Tibet. LA–ICP–MS zircon U–Pb dating reveal that the Yilashan and Amdo granitoids were emplaced at ~121–110 Ma. These granitic rocks display selective enrichment of light rare earth elements, large ion lithophile elements (e.g., Rb, U) and Th, but depletion of Sr and high field strength elements (e.g., Nb, Ta, Ti) compared to its neighboring elements. These new data, combined with regional geological setting, show that these igneous rocks were formed under a geodynamic setting of the Lhasa and Qiangtang (–Amdo) collision with oceanic slab breakoff and asthenospheric upwelling. The BNTO had been closed at ~121–110 Ma in the study area. Yilashan-Amdo granitoids roughly yield high (87Sr/86Sr)i ratios and obvious negative εNd(t) and zircon εHf(t) values along with old Nd TDM and zircon Hf TDM2 ages. Together with their variable U–Pb ages, these features indicate a Precambrian “hidden” crustal source beneath the northern Lhasa and Amdo terranes. The YLSS S-type granophyres were derived from partial melting of Paleoproterozoic lower crustal metagraywackes, whereas the YLSZ quartz diorite–porphyrites and the Amdo I- and A-type granites were mainly derived from partial melting of Paleo–Mesoproterozoic lower crustal mafic rocks with a certain amount of addition of mantle-derived melts. Minor amounts of the materials originated from the Amdo orthogneisses may also be involved in the formation of the YLSZ quartz diorite–porphyrites and the Amdo I-type granites. In addition, the Yilashan ophiolite was intruded by the ~112–108 Ma granophyric and quartz diorite–porphyritic intrusions before its final emplacement into the surrounding strata.
Funder
National Nature Science Foundation of China
Nature Science Foundation of Guangdong Province
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference161 articles.
1. The Nature and Origin of Granite;Pitcher,1997
2. The role of lower crustal recycling in continent formation;Rudnick;Geochim. Et Cosmochim. Acta,2003
3. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis
4. The identification and significance of pure sediment-derived granites
5. Geochemistry and Geochronology of the Cenozoic Zhalaga Granitoids of the Yulong Alkali-rich Porphyry Belt in Eastern Tibet (Xizang), SW China: Petrogenesis and Tectonic Implications;Xu;Acta Geol. Sin-Engl.,2020
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献