Research on the Characteristic Spectral Band Determination for Water Quality Parameters Retrieval Based on Satellite Hyperspectral Data

Author:

Xia Xietian123,Lu Hui24ORCID,Xu Zenghui3,Li Xiang3,Tian Yu1

Affiliation:

1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

2. Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China

3. China Construction Power and Environment Engineering Co., Ltd., Nanjing 210012, China

4. Tsinghua University (Department of Earth System Science)—Xi’an Institute of Surveying and Mapping Joint Research Center for Next-Generation Smart Mapping, Beijing 100084, China

Abstract

Hyperspectral remote sensing technology has been widely used in water quality monitoring. However, while it provides more detailed spectral information for water quality monitoring, it also gives rise to issues such as data redundancy, complex data processing, and low spatial resolution. In this study, a novel approach was proposed to determine the characteristic spectral band of water quality parameters based on satellite hyperspectral data, aiming to improve data utilization of hyperspectral data and to achieve the same precision monitoring of multispectral data. This paper first introduces the data matching method of satellite hyperspectral data and water quality based on space–time information for guidance in collecting research data. Secondly, the customizable and fixed spectral bands of the existing multispectral camera products were studied and used for the preprocessing of hyperspectral data. Then, the determination approach of characteristic spectral bands of water quality parameters is proposed based on the correlation between the reflectance of different bands and regression modeling. Next, the model performance for retrieval of various water quality parameters was compared between the typical empirical method and artificial neural network (ANN) method of different spectral band sets with different band numbers. Finally, taking the adjusted determination coefficient R2¯ as an evaluation index for the models, the results show that the ANN method has obvious advantages over the empirical method, and band set providing more band options improves the model performance. There is an optimal band number for the characteristic spectral bands of water quality parameters. For permanganate index (CODMn), dissolved oxygen (DO), and conductivity (EC), the R2¯ of the optimal ANN model with three bands can reach about 0.68, 0.43, and 0.49, respectively, whose mean absolute percentage error (MAPE) values are 14.02%, 16.26%, and 17.52%, respectively. This paper provides technical guidance for efficient utilization of hyperspectral data by determination of characteristic spectral bands, the theoretical basis for customization of multispectral cameras, and the subsequent water quality monitoring through remote sensing using a multispectral drone.

Funder

China Postdoctoral Science Foundation

Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3