Spatial and Spectral Translation of Landsat 8 to Sentinel-2 Using Conditional Generative Adversarial Networks

Author:

Mukherjee Rohit1ORCID,Liu Desheng2ORCID

Affiliation:

1. School of Geography, Development, and Environment, The University of Arizona, Tucson, AZ 85721, USA

2. Department of Geography, The Ohio State University, Columbus, OH 43210, USA

Abstract

Satellite sensors like Landsat 8 OLI (L8) and Sentinel-2 MSI (S2) provide valuable multispectral Earth observations that differ in spatial resolution and spectral bands, limiting synergistic use. L8 has a 30 m resolution and a lower revisit frequency, while S2 offers up to a 10 m resolution and more spectral bands, such as red edge bands. Translating observations from L8 to S2 can increase data availability by combining their images to leverage the unique strengths of each product. In this study, a conditional generative adversarial network (CGAN) is developed to perform sensor-specific domain translation focused on green, near-infrared (NIR), and red edge bands. The models were trained on the pairs of co-located L8-S2 imagery from multiple locations. The CGAN aims to downscale 30 m L8 bands to 10 m S2-like green and 20 m S2-like NIR and red edge bands. Two translation methodologies are employed—direct single-step translation from L8 to S2 and indirect multistep translation. The direct approach involves predicting the S2-like bands in a single step from L8 bands. The multistep approach uses two steps—the initial model predicts the corresponding S2-like band that is available in L8, and then the final model predicts the unavailable S2-like red edge bands from the S2-like band predicted in the first step. Quantitative evaluation reveals that both approaches result in lower spectral distortion and higher spatial correlation compared to native L8 bands. Qualitative analysis supports the superior fidelity and robustness achieved through multistep translation. By translating L8 bands to higher spatial and spectral S2-like imagery, this work increases data availability for improved earth monitoring. The results validate CGANs for cross-sensor domain adaptation and provide a reusable computational framework for satellite image translation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3