Research on Deformation Evolution of a Large Toppling Based on Comprehensive Remote Sensing Interpretation and Real-Time Monitoring

Author:

Cui Shenghua1ORCID,Wang Hui12,Pei Xiangjun1,Luo Luguang3,Zeng Bin4ORCID,Jiang Tao1

Affiliation:

1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

2. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7522 NB Enschede, The Netherlands

3. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

4. School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Deep, unstable slopes are highly developed in mountainous areas, especially in the Minjiang River Basin, Sichuan Province, China. In this study, to reveal their deformation evolution characteristics for stability evaluation and disaster prevention, multi-period optical remote sensing images (2010–2019), SBAS-InSAR data (January 2018–December 2019), and on-site real-time monitoring (December 2017–September 2020) were utilized to monitor the deformation of a large deep-seated toppling, named the Tizicao (TZC) Toppling. The obtained results by different techniques were cross-validated and synthesized in order to introduce the spatial and temporal characteristics of the toppling. It was found that the displacements on the north side of the toppling are much larger than those on the south side, and the leading edge exhibits a composite damage pattern of “collapse failure” and “bulging cracking”. The development process of the toppling from the formation of a tensile crack at the northern leading edge to the gradual pulling of the rear edge was revealed for a time span of up to ten years. In addition, the correlation between rainfall, earthquakes, and GNSS time series showed that the deformation of the toppling is sensitive to rainfall but does not change under the effect of earthquakes. The surface-displacement-monitoring method in this study can provide a reference for the evolution analysis of unstable slopes with a large span of deformation.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

State Key Laboratory of Geohazard Prevention and Geoenvironment Pro-tection Independent Research Project

Sichuan Science and Technology Program

China Scholarship Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3