Susceptibility Mapping of Unhealthy Trees in Jiuzhaigou Valley Biosphere Reserve

Author:

Gao Sheng123,Chen Fulong12ORCID,Wang Qin4,Shi Pilong12,Zhou Wei12ORCID,Zhu Meng12

Affiliation:

1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Jiuzhaigou Valley Scenic Area Administration, Jiuzhaigou 623402, China

Abstract

Jiuzhaigou Valley is recognized as both a world natural heritage site and a biosphere reserve. Conducting research on vegetation health within its scope can provide a demonstration role for sustainable development research. In this study, we proposed a technology integration approach that combined remote sensing intelligent identification and quantitative retrieval, and achieved vegetation health monitoring and susceptibility mapping of unhealthy trees. Leveraging WorldView-2 high-resolution satellite images, unhealthy trees were elaborately identified through the object-oriented classification method employing spectral and texture features, with F1 Score exceeding 75%. By applying fuzzy operations on indices related to leaf pigment and canopy architecture, we ultimately generated susceptibility maps of unhealthy trees on Sentinel-2 satellite images, with Area Under the Curve (AUC) exceeding 0.85. Our findings underscore that the vegetation health in Jiuzhaigou Valley is predominantly influenced by human activities and geological hazards. The forests of Jiuzhaigou Valley exhibit a certain degree of resilience to geological disasters, while human activities have been continuously exerting adverse effects on forest health in recent years, necessitating heightened attention. The methodology proposed in this study for mapping unhealthy trees susceptibility presents a cost-effective solution that can be readily applied for vegetation health monitoring and early warning in analogous biosphere reserves.

Funder

Jiuzhaigou Scenic Area Administration Bureau

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3