Forest Height Inversion by Combining Single-Baseline TanDEM-X InSAR Data with External DTM Data

Author:

He Wenjie1ORCID,Zhu Jianjun1,Lopez-Sanchez Juan M.2ORCID,Gómez Cristina34ORCID,Fu Haiqiang1,Xie Qinghua5

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. Signals, Systems and Telecommunications Group, Instituto Universitario de Investigación Informática, University of Alicante, 03080 Alicante, Spain

3. iuFOR-EiFAB, Campus Duques de Soria, University of Valladolid, 42004 Soria, Spain

4. Department of Geography and Environment, School of Geoscience, University of Aberdeen, Aberdeen AB24 3UE, UK

5. School of Geography and Information Engineering, China University of Geoscience (Wuhan), Wuhan 430074, China

Abstract

Forest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). A ground-to-volume ratio estimation model was proposed so that the canopy height could be precisely estimated from the random-volume-over-ground (RVoG) model. We also refined the RVoG inversion process with the relationship between the estimated penetration depth (PD) and the phase center height (PCH). The proposed method was tested by TanDEM-X InSAR data acquired over relatively homogenous coniferous forests (Teruel test site) and coniferous as well as broadleaved forests (La Rioja test site) in Spain. Comparing the TanDEM-X-derived height with the LiDAR-derived height at plots of size 50 m × 50 m, the root-mean-square error (RMSE) was 1.71 m (R2 = 0.88) in coniferous forests of Teruel and 1.97 m (R2 = 0.90) in La Rioja. To demonstrate the advantage of the proposed method, existing methods based on ignoring ground scattering contribution, fixing extinction, and assisting with simulated spaceborne LiDAR data were compared. The impacts of penetration and terrain slope on the RVoG inversion were also evaluated. The results show that when a DTM is available, the proposed method has the optimal performance on forest height estimation.

Funder

National Natural Science Foundation of China

Hunan Natural Science Foundation

Spanish Ministry of Science and Innovation

PROWARM

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3