Study of the Effect of Different Atmospheric Conditions on the Temporal Evolution of the Mixing Layer over Madrid during the Year 2020 by Means of Two Different Methods: Ceilometer Signals and the ECMWF-IFS Meteorological Model

Author:

Barragán Ruben1ORCID,Molero Francisco1ORCID,Salvador Pedro1ORCID,Theobald Mark R.1ORCID,Vivanco Marta G.1,Rodríguez-Sánchez Alejandro1ORCID,Gil Victoria1ORCID,Garrido Juan Luis1,Pujadas Manuel1,Artíñano Begoña1ORCID

Affiliation:

1. Department of Environment, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040 Madrid, Spain

Abstract

Atmospheric aerosols are one of the main factors that contribute to poor air quality. These aerosols are mostly concentrated within the atmospheric boundary layer (ABL) and mixing layer (ML). The ABL extends from ground level to the lowest level of the troposphere directly affected by surface temperature, solar irradiance, the orography and its proximity to coastal areas, causing turbulence in a daily cycle. This turbulence controls the vertical mixing of aerosols and pollutants and their dispersion in the ML. Therefore, proper characterization of these layers is of crucial importance in numerical weather forecasting and climate models; however, their estimation nowadays presents some spatial and temporal limitations. In order to deal with these limitations and to assess the influence of different meteorological conditions on the temporal evolution of the aforementioned layers, the evolution of the ML over Madrid (Spain) has been studied for the year 2020 by means of ceilometer profiles fed into the STRATfinder algorithm. This algorithm is able to give reliable estimates of the height of the ABL (ABLH) and ML (MLH). The results are compared with the ECMWF-IFS model predictions, which is able to compute the MLH under any meteorological condition. Then, the influence of the meteorology in the estimation of MLHs was established by classifying data based on the season and six different prevalent synoptic meteorological situations defined using ground-level pressure fields, as well as by splitting the days into four periods (morning, daytime, evening and nighttime). Our results show that both datasets, the STRATfinder values and the ECMWF-IFS model computations, are very sensitive to the meteorological conditions that play a main role in the MLH temporal evolution. For instance, high solar irradiance and ground radiation cause high turbulence and convection that lead to a well-developed ML. In cases in which the ML is well developed, both methods show similar results, and there are therefore better correlations between them. On the contrary, the results presented here show that the presence of high relative humidity and low temperatures hamper the growth of the ML, causing different errors in both MLH estimations and poor correlations between them. Furthermore, the ECMWF-IFS model has shown a sharp decrease, identified as an artificial behavior from 16:00 UTC, because of the influence of low solar zenith angles and the temporal interpolation. The STRATfinder algorithm also shows a sharp decrease just before the sunset because of the way the algorithm distinguishes between the ML and the residual layer. Thus, this study concludes that the MLH temporal evolution still needs to be characterized using complementary tools, since the methods presented here are strongly affected by the meteorological conditions and do not show enough reliability to work individually. However, ceilometer measurements offer great potential as a correction tool for ABL heights derived from models involved in air pollution dispersion assessments.

Funder

European Union

Madrid Regional Government

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3