Integration of 3D Printing and Industry 4.0 into Engineering Teaching

Author:

Chong Siewhui,Pan Guan-Ting,Chin Jitkai,Show Pau,Yang Thomas,Huang Chao-Ming

Abstract

The rapid emergence of Industry 4.0 implies that our engineering graduates need to acquire new competences to adapt to the digital transformation. This paper evaluates the benefits of integrating 3D printing and Industry 4.0 into engineering undergraduate programs. Surveys were conducted to gather the feedbacks and views from academics and students. 75% and 86% of the participating students and lecturers, respectively, have heard about Industry 4.0. 63% of the students were exposed to modules with such elements. Tangible 3D-printed models enable visualization of fundamental theories and concepts. Enhanced 3D drawing skills and rapid 3D-printed prototypes can greatly help students study common processing equipment, manufacturing, maintenance, logistics, and operations. Some limitations were identified such as budgeting, lack of knowledge, and difficulty in changing from traditional pedagogy. This paper thus proposes a blended learning model for integrating Industry 4.0 into engineering teaching, which consists of traditional, online learning, and flipped classroom approaches. Implementation of the model can be started off with cross-multidisciplinary collaborations or expert-led training for the instructors, followed by traditional face-to-face teaching and online learning. Flipped classroom is one of the essential components of the model which encourages learning-by-making approaches such as ‘bring your own device’ and ‘do it yourself’. Integrating Industry 4.0 into engineering teaching can create a student-based learning environment, where students are gradually trained to become proactive and lifelong learners who are more conscious of the environment and economy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference31 articles.

1. Chapter 9—Application of 3d printing in medical simulation and education;Cheung,2016

2. The application of 3D printing in anatomy education

3. 3D printed reproductions of orbital dissections: a novel mode of visualising anatomy for trainees in ophthalmology or optometry

4. Big Ideas About 3D Printing & 3D Printing Bighttp://www.emergingobjects.com/

5. Chemical Engineering Education in the Next Century

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3