An Adaptive Offloading Method for an IoT-Cloud Converged Virtual Machine System Using a Hybrid Deep Neural Network

Author:

Son Yunsik,Jeong JunhoORCID,Lee YangSun

Abstract

A virtual machine with a conventional offloading scheme transmits and receives all context information to maintain program consistency during communication between local environments and the cloud server environment. Most overhead costs incurred during offloading are proportional to the size of the context information transmitted over the network. Therefore, the existing context information synchronization structure transmits context information that is not required for job execution when offloading, which increases the overhead costs of transmitting context information in low-performance Internet-of-Things (IoT) devices. In addition, the optimal offloading point should be determined by checking the server’s CPU usage and network quality. In this study, we propose a context management method and estimation method for CPU load using a hybrid deep neural network on a cloud-based offloading service that extracts contexts that require synchronization through static profiling and estimation. The proposed adaptive offloading method reduces network communication overheads and determines the optimal offloading time for low-computing-powered IoT devices and variable server performance. Using experiments, we verify that the proposed learning-based prediction method effectively estimates the CPU load model for IoT devices and can adaptively apply offloading according to the load of the server.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference24 articles.

1. A study on the smart virtual machine for executing virtual machine codes on smart platforms;Son;Int. J. Smart Home,2012

2. A study on the smart virtual machine for smart devices;Son;Information,2013

3. Design and Implementation of HTML5 based SVM for Integrating Runtime of Smart Devices and Web Environments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3