Green Synthesis of Pristine and Ag-Doped TiO2 and Investigation of Their Performance as Photoanodes in Dye-Sensitized Solar Cells

Author:

Sharif Abdul Mohshen1,Ashrafuzzaman Md.1,Kalam Abul12,Al-Sehemi Abdullah Godran12ORCID,Yadav Pankaj3,Tripathi Brijesh4ORCID,Dubey Mrigendra5,Du Gaohui6

Affiliation:

1. Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia

2. Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia

3. Department of Solar Energy, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar 382426, India

4. Department of Physics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar 382426, India

5. Soft Materials Research Laboratory, Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore 453552, India

6. Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China

Abstract

Dye-sensitized solar cells (DSSCs) have emerged as a potential candidate for third-generation thin film solar energy conversion systems because of their outstanding optoelectronic properties, cost-effectiveness, environmental friendliness, and easy manufacturing process. The electron transport layer is one of the most essential components in DSSCs since it plays a crucial role in the device’s greatest performance. Silver ions as a dopant have drawn attention in DSSC device applications because of their stability under ambient conditions, decreased charge recombination, increased efficient charge transfer, and optical, structural, and electrochemical properties. Because of these concepts, herein, we report the synthesis of pristine TiO2 using a novel green modified solvothermal simplistic method. Additionally, the prepared semiconductor nanomaterials, Ag-doped TiO2 with percentages of 1, 2, 3, and 4%, were used as photoanodes to enhance the device’s performance. The obtained nanomaterials were characterized using XRD, FTIR, FE-SEM, EDS, and UV–vis techniques. The average crystallite size for pristine TiO2 and Ag-doped TiO2 with percentages of 1, 2, 3, and 4% was found to be 13 nm by using the highest intensity peaks in the XRD spectra. The Ag-doped TiO2 nanomaterials exhibited excellent photovoltaic activity as compared to pristine TiO2. The incorporation of Ag could assist in successful charge transport and minimize the charge recombination process. The DSSCs showed a Jsc of 8.336 mA/cm2, a Voc of 698 mV, and an FF of 0.422 with a power conversion efficiency (PCE) of 2.45% at a Ag concentration of 4% under illumination of 100 mW/cm2 power with N719 dye, indicating an important improvement when compared to 2% Ag-doped (PCE of 0.97%) and pristine TiO2 (PCE of 0.62%).

Funder

Dean of Scientific Research, King Khalid University, Abha, Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3