Experimental vs. Theoretical Viscosity Determination of Aluminosilicate Glasses

Author:

Zawada Anna1ORCID,Lubas Malgorzata1ORCID,Nowak Adrian1ORCID

Affiliation:

1. Department of Materials Engineering, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Czestochowa, Poland

Abstract

The paper presents the results of studies on the viscosity of the glass mass in various temperature ranges, determining the basic technological parameter, very important from the point of view of melting and forming. For this purpose, six sets based on natural raw materials such as basalt, dolomite, and amphibolite, modified with different amounts of float glass cullet, were melted. The melting process was carried out in an electric furnace at the temperature of 1450 °C for 2 h. Using the dilatometric method, high-temperature microscopy and theoretical calculation methods, the viscosity of the produced glasses was determined in various temperature ranges. Comparative analyses of the employed methods were carried out. The significance of the applied calculation methods for aluminosilicate glasses depending on the basic chemical composition of the glasses was presented. The relationship between the manner of incorporating amphoteric ions Al3+, Fe3+ and Mg2+ into the glass structure and the change in viscosity in the temperature range corresponding to the working point range at 104 [dPa·s] viscosity and the relaxation range—Tg temperature at 1013 [dPa·s] viscosity was justified. It was justified that in order to plot the viscosity curve with the correct slope in the forming range for aluminosilicate glasses, it is appropriate to use the two-point method based on the fixed viscosity points of 104 [dPa·s] and 1013 [dPa·s].

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3