Effect of Carbonation Treatment on the Properties of Steel Slag Aggregate

Author:

Ma Jian12,Dai Guangjian1,Jiang Feifei23ORCID,Wang Ning2,Zhao Yufeng2,Wang Xiaodong1

Affiliation:

1. College of Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China

2. Suzhou Institute of Technology, Jiangsu University of Science and Technology, Suzhou 215600, China

3. College of Civil Engineering, Nantong Institute of Technology (NIT), Nantong 226000, China

Abstract

Steel slag is the waste slag generated after steel smelting, which has cementitious activity. However, untreated steel slag can damage the integrity of steel slag concrete due to its harmful expansion. This study prepared porous aggregates by mixing powdered steel slag, fly ash, and cement and carbonated them with CO2 under high pressure conditions (0.2 MPa). The effect of carbonation on the performance of steel slag aggregate was studied using volume stability and crushing value. The effect of different carbonation conditions on the products was studied using X-ray diffraction (XRD) and thermogravimetric (TG) analyses, and the carbon sequestration efficiency of steel slag under different treatment methods was quantitatively evaluated. The research results indicate that untreated steel slag was almost completely destroyed and lost its strength after autoclave curing. With the increase in temperature and carbonation time, the performance of steel slag aggregate gradually improved and the pulverization rate, expansion rate, and crushing value gradually decreased. According to the experimental results of XRD and TG, it was found that the reaction between f-CaO (free CaO) and CO2 in steel slag generated CaCO3, filling the pores inside the aggregate, which was the internal reason for the improvement of aggregate performance. After comparison, the best carbonation method was maintained at 55 °C for 72 h. After carbonation, the steel slag aggregate had a pulverization rate of 2.4%, an expansion rate of 0.23%, a crushing value of 23%, and a carbon sequestration efficiency of 11.27% per unit weight of aggregate.

Funder

Suzhou science and technology development plan

Zhangjiagang science and technology development plan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3