Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy

Author:

Wang Jingzhe12ORCID,Zhang Siyu12,Jiang Liang3,Srivatsa Shesh4,Huang Zaiwang12

Affiliation:

1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

2. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China

3. Institute for Advanced Studies in Precision Materials, Yantai University, Yantai 264005, China

4. Srivatsa Consulting LLC, Cincinnati, OH 45249, USA

Abstract

With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings.

Funder

The National Key Research and Development Program of China

Guangdong Province Key-Area Research and Development Program of China

State Key Laboratory of Powder Metallurgy

Publisher

MDPI AG

Subject

General Materials Science

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3