A Mission Reliability-Driven Manufacturing System Health State Evaluation Method Based on Fusion of Operational Data

Author:

Han Xiao,Wang Zili,He YihaiORCID,Zhao Yixiao,Chen Zhaoxiang,Zhou Di

Abstract

The rapid development of complexity and intelligence in manufacturing systems leads to an increase in potential operational risks and therefore requires a more comprehensive system-level health diagnostics approach. Based on the massive multi-source operational data collected by smart sensors, this paper proposes a mission reliability-driven manufacturing system health state evaluation method. Characteristic attributes affecting the mission reliability are monitored and analyzed based on different sensor groups, including the performance state of the manufacturing equipment, the execution state of the production task and the quality state of the manufactured product. The Dempster-Shafer (D-S) evidence theory approach is used to diagnose the health state of the manufacturing system. Results of a case study show that the proposed evaluation method can dynamically and effectively characterize the actual health state of manufacturing systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3