CD169+ Skin Macrophages Function as a Specialized Subpopulation in Promoting Psoriasis-like Skin Disease in Mice

Author:

Li Mengyao1,Yu Wenjing1,Liu Zhiduo1ORCID,Liu Siming1

Affiliation:

1. Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Abstract

Skin macrophages are critical to maintain and restore skin homeostasis. They serve as major producers of cytokines and chemokines in the skin, participating in diverse biological processes such as wound healing and psoriasis. The heterogeneity and functional diversity of macrophage subpopulations endow them with multifaceted roles in psoriasis development. A distinct subpopulation of skin macrophages, characterized by high expression of CD169, has been reported to exist in both mouse and human skin. However, its role in psoriasis remains unknown. Here, we report that CD169+ macrophages exhibit increased abundance in imiquimod (IMQ) induced psoriasis-like skin lesions. Specific depletion of CD169+ macrophages in CD169-ditheria toxin receptor (CD169-DTR) mice inhibits IMQ-induced psoriasis, resulting in milder symptoms, diminished proinflammatory cytokine levels and reduced proportion of Th17 cells within the skin lesions. Furthermore, transcriptomic analysis uncovers enhanced activity in CD169+ macrophages when compared with CD169− macrophages, characterized by upregulated genes that are associated with cell activation and cell metabolism. Mechanistically, CD169+ macrophages isolated from IMQ-induced skin lesions produce more proinflammatory cytokines and exhibit enhanced ability to promote Th17 cell differentiation in vitro. Collectively, our findings highlight the crucial involvement of CD169+ macrophages in psoriasis development and offer novel insights into the heterogeneity of skin macrophages in the context of psoriasis.

Funder

National Key Research and Development Program of China

Shanghai Municipal Health Commission

National Natural Science Foundation Projects of China

Shanghai Science and Technology Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3