Self-Assembly of Molecular Landers Equipped with Functional Moieties on the Surface: A Mini Review

Author:

El Hasnaoui Nadia12ORCID,Fatimi Ahmed12ORCID,Benjalal Youness12ORCID

Affiliation:

1. Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592, Mghila, Beni-Mellal 23000, Morocco

2. Chemical Science and Engineering Research Team (ERSIC), Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592, Mghila, Beni-Mellal 23000, Morocco

Abstract

The bottom-up fabrication of supramolecular and self-assembly on various substrates has become an extremely relevant goal to achieve prospects in the development of nanodevices for electronic circuitry or sensors. One of the branches of this field is the self-assembly of functional molecular components driven through non-covalent interactions on the surfaces, such as van der Waals (vdW) interactions, hydrogen bonding (HB), electrostatic interactions, etc., allowing the controlled design of nanostructures that can satisfy the requirements of nanoengineering concepts. In this context, non-covalent interactions present opportunities that have been previously explored in several molecular systems adsorbed on surfaces, primarily due to their highly directional nature which facilitates the formation of well-ordered structures. Herein, we review a series of research works by combining STM (scanning tunneling microscopy) with theoretical calculations, to reveal the processes used in the area of self-assembly driven by molecule Landers equipped with functional groups on the metallic surfaces. Combining these processes is necessary for researchers to advance the self-assembly of supramolecular architectures driven by multiple non-covalent interactions on solid surfaces.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3