Increased Absorption of Thyroxine in a Murine Model of Hypothyroidism Using Water/CO2 Nanobubbles

Author:

Opazo Maria Cecilia12,Yañez Osvaldo3ORCID,Márquez-Miranda Valeria4,Santos Johana2,Rojas Maximiliano4,Araya-Durán Ingrid4,Aguayo Daniel4,Leal Matías5ORCID,Duarte Yorley46,Kohanoff Jorge78ORCID,González-Nilo Fernando D.46ORCID

Affiliation:

1. Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago 7500975, Chile

2. Laboratorio de Endocrino Inmunología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile

3. Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500975, Chile

4. Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile

5. Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile

6. Interdisciplinary Center for Neuroscience of Valparaíso, Faculty of Science, University of Valparaíso, Valparaíso 2340000, Chile

7. Instituto de Fusión Nuclear “Guillermo Velarde”, Universidad Politécnica de Madrid, 28006 Madrid, Spain

8. Atomistic Simulation Centre, Queen’s University Belfast, Belfast BT7 1NN, UK

Abstract

Thyroxine (T4) is a drug extensively utilized for the treatment of hypothyroidism. However, the oral absorption of T4 presents certain limitations. This research investigates the efficacy of CO2 nanobubbles in water as a potential oral carrier for T4 administration to C57BL/6 hypothyroid mice. Following 18 h of fasting, the formulation was administered to the mice, demonstrating that the combination of CO2 nanobubbles and T4 enhanced the drug’s absorption in blood serum by approximately 40%. To comprehend this observation at a molecular level, we explored the interaction mechanism through which T4 engages with the CO2 nanobubbles, employing molecular simulations, semi-empirical quantum mechanics, and PMF calculations. Our simulations revealed a high affinity of T4 for the water–gas interface, driven by additive interactions between the hydrophobic region of T4 and the gas phase and electrostatic interactions of the polar groups of T4 with water at the water–gas interface. Concurrently, we observed that at the water–gas interface, the cluster of T4 formed in the water region disassembles, contributing to the drug’s bioavailability. Furthermore, we examined how the gas within the nanobubbles aids in facilitating the drug’s translocation through cell membranes. This research contributes to a deeper understanding of the role of CO2 nanobubbles in drug absorption and subsequent release into the bloodstream. The findings suggest that utilizing CO2 nanobubbles could enhance T4 bioavailability and cell permeability, leading to more efficient transport into cells. Additional research opens the possibility of employing lower concentrations of this class of drugs, thereby potentially reducing the associated side effects due to poor absorption.

Funder

MCO

FGN

YD

VMM

EPSRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3